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Slow inviscid flows of a compressible fluid in spatially inhomogeneous systems
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An ideal compressible fluid is considered, with an equilibrium density being a given function of coordinates
due to presence of some static external forces. The slow flows in such system, which do not disturb the density,
are investigated with the help of the Hamiltonian formalism. The equations of motion of the system are derived
for an arbitrary given topology of the vorticity field. The general form of the Lagrangian for frozen-in vortex
lines is established. The local induction approximation for motion of slender vortex filaments in several
inhomogeneous physical models is studied.
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I. INTRODUCTION

Hydrodynamic-type systems of equations are extensiv
employed for macroscopic description of physical pheno
ena in ordinary and superfluid liquids, gases, plasmas, an
other substances. In solving hydrodynamic problems, i
admissible in many cases to neglect all dissipative proce
and use the ideal fluid approximation, at least as the
step. With this approximation, a dynamic model describ
flow is conservative. The Hamiltonian formalism is a conv
nient tool to deal with such systems@1,2#, which makes pos-
sible to consider in a universal way all nonlinear processe
big number of works is devoted to application of the Ham
tonian method in hydrodynamics~see, for instance, the re
views @3,4# and references therein!.

One of the most important questions, permitted for a u
versal consideration in the frame of canonical formalism
the question about integrals of motion of a dynamic syste
According to the theorem of Noether@1,2#, each conserva
tion law of a system is closely connected to a symmetry
the corresponding Lagrangian with respect to some o
parameter group of transformations of dynamical variab
It is well known that the conservation laws for the energ
momentum, and the angular momentum follow from the fu
damental properties of the space and time, namely, from
mogeneity of the time and from homogeneity and isotropy
the space. Due to these properties, shifts and rotations
system do not change its Lagrangian. The characteristic
ture of the hydrodynamic-type systems is that they poss
besides the indicated usual integrals of motion, also an
nite number of specific integrals of motion related to t
freezing-in property of canonical vorticity@3–12#. The rea-
son for this is a basic physical property of fluids, relabeli
symmetry. For instance, in isentropic flows the circulation
the canonical momentum along any frozen-in closed con
is conserved. In usual nonrelativistic hydrodynamics, wh
the canonical momentum coincides with the velocity, t
given statement is known as the theorem of Kelvin ab
conservation of the velocity circulation@13,14#.

Existence of an infinite number of integrals of motio
influences strongly dynamical and statistical properties
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liquid systems. This is the reason why a clarification of stru
ture of conservation laws is very important, as well as
search for such new parametrizations for dynamical v
ables, which take into account the integrals of motion m
completely. In many cases, even when a dissipation
present but its level is low, it is still correct to speak abo
integrals of the corresponding conservative problem, beca
values of some of them are conserved with a high accur
especially on an initial stage of the evolution, while the sy
tem has not proceeded to a state where a role of dissipatio
significant due to large gradients. Besides this, conserva
laws in physical systems, as a rule, are associated with d
nite geometrical objects. Usage of these associations
motes understanding and vivid imagination of everythi
that happens. In hydrodynamic models, the frozen-in vor
lines are such geometrical objects, so the present wor
devoted to the study of the motion of vortex lines in spatia
inhomogeneous systems.

Hydrodynamic equations describe, in particular, inter
tion between ‘‘soft’’ degrees of freedom of a system
frozen-in vortices, and ‘‘hard’’ degrees of freedom—acous
modes. The presence of soft degrees of freedom is expla
by the fact that equilibrium states of the fluid are high
degenerated due to the relabeling symmetry. Thus, no po
tial energy corresponds to soft degrees of freedom, unlike
hard degrees of freedom. Due to the dominating effect
elastic potential energy, hard degrees of freedom beh
typically, like a set of weakly nonlinear oscillators. On th
contrary, dynamics of soft degrees of freedom is not do
nated by a potential energy, and usually it is highly nonline
In a limit of slow flows, when a typical velocity of vortex
structure motion is small in comparison with the sou
speed, a dynamic regime is possible, in which the hard
grees of freedom, corresponding to deviations of fluid d
sity r(r ,t) from an equilibrium configurationr0(r ), are ex-
cited weakly. Then, completely neglecting the sound, in
homogeneous caser05const one arrives at the models
incompressible fluid. For dynamics of vortices in incom
pressible perfect fluid the so called formalism of vortex lin
has been developed recently@8–12#, which takes into ac-
count the conservation of topology of the vorticity fie
@15,16#. Application of this formalism allows one to dea
with a partially integrated system, where the topology
©2001 The American Physical Society05-1
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V. P. RUBAN PHYSICAL REVIEW E 64 036305
fixed by the Cauchy invariant@13#. In the proposed descrip
tion the frozen-in solenoidal vorticity field is considered a
continuous distribution of the elementary objects—vor
lines. Such formulation of inviscid hydrodynamics as t
problem of vortex line motion has been very suitable for
study of localized vortex structures such as vortex filame
Also, it seems to be an adequate approach to the proble
finite time singularity formation in solutions of hydrody
namic equations@17#.

The goal of the present work is to extend the vortex l
formalism to the case where equilibrium densityr0(r ) is a
fixed nontrivial function of spatial coordinates due to a sta
influence of some external forces. Such situation takes p
in many physically important models. For examples, it c
be the gravitational force for a large mass of an isentro
gas, both in usual and in relativistic hydrodynamics, or it c
be the condition of electrical neutrality for the electron flu
on a given background of ion distribution in the model
electron magnetohydrodynamics~EMHD!. The theory devel-
oped can be also applied to tasks about long-scale dyna
of the quantized vortex filaments in a Bose-Einstein cond
sate placed into a trap of a sufficiently large size. The vor
line formalism seems to be a universal and adequate too
investigation of slow inviscid flows in inhomogeneous sy
tems. For instance, it makes possible, in a simple and s
dard way, to analyze qualitative behavior of vortices witho
detailed consideration of basic equations of motion for
fluid. Therefore, the proposed approach can have advant
over other methods when complicated systems will
studied.

As a concrete result, the local induction approximati
~LIA ! in vortex dynamics will be analyzed for several sp
tially inhomogeneous physical systems, namely for Euler
compressible hydrodynamics in an external field, for EMH
and for vortices in trapped Bose-Einstein condensates. A
equation of vortex filament motion will be derived, whic
takes into account the inhomogeneity of these systems,
~33!. As to relativistic hydrodynamics in a static gravitation
field, the proposed method gives a more complicated L
equation than Eq.~33!, as it has been shown recently by th
present author@18#. ~See also the most recent paper@19#
about dynamics of an ultrarelativistic fluid in the flat anis
tropic cosmological models of expanding universe, wh
the formalism of vortex lines has been applied to syste
with Hamiltonian functionals depending explicitly on th
time variable, and the effect of nonstationary anisotropy
the space on vortex dynamics has been studied.!

This paper is organized as follows. A short review of L
grangian formalism for fluid media is given in Sec. II.
provides a basis for development in Sec. III of the vortex l
formalism for spatially inhomogeneous systems. Then
Sec. IV, the method developed is applied to derive appro
mate equations of motion for slender nonstretched vo
filaments in three above-mentioned physical models.

II. LAGRANGIAN FORMALISM FOR A FLUID

From the viewpoint of the Lagrangian formalism, th
freezing-in property of the canonical vorticity is due to t
03630
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special symmetry of the basic equations of ideal hydro
namics @3–8,11,12#. As known, the entire Lagrangian de
scription of a motion of some continuous medium can
given by the three-dimensional~3D! mapping r5x(a,t),
which indicates the space coordinates of each medium p
labeled by a labela5(a1 ,a2 ,a3), at an arbitrary moment in
time t. The labelinga can be chosen in such a manner th
the amount of matter in a small volumed3a in the label
space is simply equal to this volume. With neglecting
dissipative processes, a dynamic model describing flow
conservative, so the equations of motion for the mapp
x(a,t) follow from a variational principle

dS5dE L$x~a,t !,ẋ~a,t !%dt50,

where the LagrangianL is a functional ofx(a,t), ẋ(a,t), and
also spatial derivatives. A very important circumstance is
lated to the fluidity property of the media under consid
ation. The fluidity is manifested in the fact that the Lagran
ian actually contains the dependence onx(a,t) and ẋ(a,t)
only through two Eulerian characteristics of the flow, name
through the field of densityr(r ,t) and the velocity field
v(r ,t), i.e., L5L$r,v%, with

r~r ,t !5detI ]a~r ,t !

]r I , v~r ,t !5 ẋ~a,t !ua5a(r ,t) . ~1!

Herea(r ,t) is the inverse mapping with respect tox(a,t).
A simple particular example is the Lagrangian of ordina

Eulerian isentropic hydrodynamics

LEuler5E S r
v2

2
2«~r!2rU~r ! Ddr , ~2!

where «(r) is the internal energy density andU(r ) is the
external force potential, for instance, the gravitational pot
tial.

A less trivial example is the Lagrangian of relativist
isentropic hydrodynamics@18# in a curved space time with
metric tensorgik(t,r ) ( i ,k50 . . . 3,a,b51 . . . 3),

Lr52E ES r

A2g
Ag0012g0ava1gabvavbDA2g dr .

Hereg5detigiki is the determinant of the metric tensor, th
expression in parenthesis is equal to the absolute value o
current four-vectorni5n(dxi /ds) @20#. A dependenceE(n)
connects the relativistic densityE of the fluid energy, mea-
sured in a locally co-moving reference frame, withn.

In plasma physics, the model of electron magnetohyd
dynamics is useful. EMHD follows in the limit of slow flows
from the Lagrangian of electron fluid

Le5E S r
v2

2
1

e

mc
r~A•v!2

~curlA!2

8p
1••• Ddr , ~3!

wherer(r ,t) is the density of electron fluid,e is the electric
charge of electron,m is its mass, andc is the speed of light.
5-2
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SLOW INVISCID FLOWS OF A COMPRESSIBLE FLUID . . . PHYSICAL REVIEW E64 036305
The vector potentialA(r ,t) of the electromagnetic field de
termines the magnetic fieldB(r ,t) by the relation B
5curlA. In this paper, we will not need an explicit form o
other terms indicated by the dots.

The list of examples, of course, is not exhausted by th
given models. All known hydrodynamic models without di
sipation, where the conservation of fluid amount takes pla
can be described in this way. So the theory developed he
quite universal and applicable in various branches of phy
where vortex phenomena occur.

It follows from the definitions~1! that dynamics of the
densityr(r ,t) obeys the continuity equation in its standa
form

r t1“~rv!50. ~4!

The vanishing condition for variation of the actionS
5*L$r,v%dt, when the mappingx(a,t) is varied bydx(a,t),
can be expressed in Eulerian representation as follows~the
generalized Euler equation@11#!

~] t1v•“ !S 1

r
•

dL
dv D5“S dL

dr D2
1

r S dL
dvaD“va. ~5!

This is merely the variational Euler-Lagrange equation

d

dt

dL
d ẋ~a!

5
dL

dx~a!

for fluid particle dynamics. The equations~4! and ~5! deter-
mine completely evolution of hydrodynamic system.

It was already mentioned that in all such systems an i
nite number of conservation laws exists. The$r,v% depen-
dence means that the LagrangianL$x(a,t),ẋ(a,t)% admits
the infinite-parametric symmetry group—it assumes
same value on any two mappingsx1(a,t) andx2(a,t), if they
differ one from another only by some relabeling of the lab
with unit Jacobian,

x2~a,t !5x1„a* ~a!,t…, deti]a* /]ai51. ~6!

Obviously, such mappings create the same density and
locity fields. According to Noether’s theorem@1,2#, every
one-parameter subgroup of the relabeling groupa* (a) with
unit Jacobian corresponds to an integral of motion. There
several classifications of these conservation laws. For
stance, one can postulate that circulation of the canon
momentump(r ,t),

p~r ,t ![
dL

d ẋ~a,t !
U

a5a(r ,t)

5
1

r S dL$r,v%

dv D , ~7!

along an arbitrary frozen-in closed contourg(t) does not
depend on time~the generalized theorem of Kelvin!:

R
g(t)

~p•dr !5const.
03630
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We arrive at a different formulation, in terms of the so-call
Cauchy invariant, when we consider the solenoidal field
the canonical vorticityV(r ,t),

V~r ,t !5curlp~r ,t !. ~8!

It is easy to check that application of the curl operator to
equation~5! gives

Vt5curl @v3V#. ~9!

The formal solution of this equation is

V~r ,t !5E d„r2x~a,t !…„V0~a!¹a…x~a,t !da, ~10!

where the solenoidal independent of time fieldV0(a) is ex-
actly the Cauchy invariant. The equation~10! displays that
lines of initial solenoidal fieldV0(a) are deformed in the
course of motion by the mappingx(a,t), keeping all the
topological characteristics unchanged@15,16#. This feature of
vortex line dynamics is called the freezing-in property.

III. HAMILTONIAN DYNAMICS OF VORTEX LINES

To continue, it is more convenient to reformulate t
problem in terms of density and canonical momentum.
the system be specified by some Hamilton functionalH$r,p%

H5E S dL
dv

•vDdr2L, ~11!

where the velocityv is expressed through the momentump
and through the densityr with the help of Eq.~7!. Let us
note that the following equality takes place:

v5
1

r S d H
dp D , ~12!

which is analogous to formula~7!. The Hamiltonian~nonca-
nonical@3#! equations of motion for the fields of density an
momentum follow from Eqs.~4! and~5!. Taking into account
the equality~12!, they have the form~for detailed derivation
see@11#!

r t1“S d H
dp D50, ~13!

pt5F S d H
dp D3

curlp

r G2“S d H
dr D . ~14!

It is assumed in this work that the Hamiltonian has
minimum at some configuration$r0(r ),p0(r )%. For simplic-
ity, we will consider only systems without gyroscopic e
fects, i.e.,p0(r )50. Our purpose is to study slow flows nea
the equilibrium. In the regime under consideration, whi
corresponds formally to ‘‘prohibition’’ of excitation of the
acoustic modes, the flow of fluid occurs in such a way t
5-3
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V. P. RUBAN PHYSICAL REVIEW E 64 036305
the density of each moving portion of fluid follows the give
functionr0(r ). Therefore, the equation~13! gives the condi-
tion

“S d H
dp D50, ~15!

which means that after imposing the constraintr5r0(r ), the
Hamiltonian no longer depends on the potential compon
of the canonical momentum field; it depends now only on
solenoidal component, i.e., actually on the vorticityV. It
should be also noted that it is sufficient to take into cons
eration only the quadratic part of the Hamiltonian, beca
the flow is supposed to be slow, so higher order terms, if
exist, may be neglected. Therefore, in further equatio
H$V% is actually a quadratic functional of the vorticity field
though this fact will not be used in formal calculations. T
condition ~15! implies validity of the formula

d H
dp

5curlS d H
dV D , ~16!

so the next equation for slow dynamics of the vorticity fo
lows from Eq.~14!:

Vt5curlFcurlS d H
dV D3

V

r0~r !G . ~17!

This equation differs only by the presence of the funct
r0(r ) ~instead of the unity! from the equation used in@10#
and@12# as a starting point in the transition to the vortex li
representation in homogeneous systems. Therefore, all
ther constructions will be done similarly to Ref.@12#. First,
let us fix the topology of the vorticity field by means of th
formula

V~r ,t !5E d „r2R~a,t !…„V0~a!“a…R~a,t !da

5
„V0~a!“a…R~a,t !

deti]R/]ai U
a5R21(r ,t)

, ~18!

whereV0(a) is the Cauchy invariant. The vector

T~a,t !5„V0~a!“a…R~a,t ! ~19!

is directed along the vorticity field at the pointr5R(a,t). It
is necessary to stress that the information supplied by
mappingR(a,t) is not so full as the information supplied b
the purely Lagrangian mappingx(a,t). The role of the map-
ping R(a,t) is exhausted by a continuous deformation of t
vortex lines of the initial fieldV0. This means that the Jaco
bian

J5deti]R/]ai ~20!

is not related directly to the densityr0(r ), inasmuch as, un
like the mappingx(a,t), the new mappingR(a,t) is defined
up to an arbitrary nonuniform shift along the vortex line
03630
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Geometrical meaning of representation~18! becomes cleare
if instead ofa we use a so-called vortex line coordinate sy
tem @n1(a),n2(a),j(a)#, so that the 2D Lagrangian coord
naten5(n1 ,n2)PN is a label of vortex lines, which lies in
some manifoldN, while a longitudinal coordinatej param-
etrizes the vortex line. Locally, vortex line coordinate syste
exists for arbitrary topology of the vorticity field, bu
globally–only in the case when all the lines are closed. In
last case Eq.~18! can be rewritten in the simple form

V~r ,t !5E
N

d2n R d„r2R~n,j,t !…Rj dj, ~21!

whereRj5]R/]j. The geometrical meaning of this formul
is rather evident—the frozen-in vorticity field is presented
a continuous distribution of vortex lines. It is also clear th
the choice of the longitudinal parameter is nonunique. T
choice is determined exclusively by convenience for a p
ticular task. Usage of the formula

Vt~r ,t !5curlrE d„r2R~a,t !…@Rt~a,t !3T~a,t !#da,

~22!

which follows immediately from Eq.~18!, together with the
general relationship between variational derivatives of an
bitrary functionalF$V%,

FT3curlrS dF

dV~R! D G5
dFˆV$R%‰

dR~a!
U

V0

, ~23!

allows us to obtain the equation of motion for the mappi
R(a,t) by substitution of representation~18! into Eq. ~17!.
As the result, dynamics of the mappingR(a,t) is determined
by the equation

@„V0~a!“a…R~a!3Rt~a!#r0~R!5
d HˆV$R%‰

dR~a!
. ~24!

It is not very difficult to check by a direct calculation that th
given equation of motion forR(a,t) follows from the varia-
tional principled*LV0

dt50, where the Lagrangian is

LV0
5E „@Rt3D~R!#•~V0“a!R…da2HˆV$R%‰,

~25!

with the vector functionD(R) being related to the densit
r0(r ) by the equality

„“R•D~R!…5r0~R!. ~26!

For application to vortex filaments, the following form of th
Lagrangian is more useful, whereR5R(n,j,t):
5-4



ui
n

e

e
in

g

a
na
to
l o
d

th
e
e

ys
g

I
L

s,
de
n
le

o
of
th
th

ur

n

ons
act
e-
:

al

.

e
g

o-
e-
n

ct
nt
e,

SLOW INVISCID FLOWS OF A COMPRESSIBLE FLUID . . . PHYSICAL REVIEW E64 036305
LN5E
N

d2n R „@Rt3D~R!#•Rj…dj2HˆV$R%‰. ~27!

It should be stressed that conservation in time of the fl
amount inside each closed frozen-in vortex surface is
imposeda priori as a constraint for the mappingR(a,t). All
such quantities are conserved in the dynamical sense du
the symmetry of the Lagrangian~27! with respect to the
group of relabelings of the labelsn of vortex lines

n5n~ñ,t !, ]~n1 ,n2!/]~ ñ1 ,ñ2!51. ~28!

Considering all one-parametrical subgroups of the giv
group of area-preserving transformations and apply
Noether’s theorem@2# to the Lagrangian~27!, it is possible
to obtain the indicated integrals of motion in the followin
form ~compare with Ref.@21#!:

I C5E
N

C~n1 ,n2!d2n R r0~R!~@R13R2#•Rj!dj,

~29!

whereC(n1 ,n2) is an arbitrary function on the manifoldN
of labels, with the only conditionCu]N50.

IV. LOCAL INDUCTION APPROXIMATION

When a particular task is being solved, the necessity
ways arises in making some simplifications. The variatio
formulation for the dynamics of vortex lines allows us
introduce and control various approximations on the leve
the Lagrangian~27!, what in practice is more convenient an
more simple than control of approximations made on
level of equations of motion. For example we will consid
now the so called LIA in dynamics of a slender nonstretch
vortex filament. As known, in spatially homogeneous s
tems the LIA yields an integrable equation that is gau
equivalent to the nonlinear Schro¨dinger equation@22#. In
general case, inhomogeneity destroys the integrability of L
equation. Nevertheless, this does not reduce the value of
as a simplified model of filament dynamics.

A. LIA in Eulerian hydrodynamics

At first, we will consider the Eulerian hydrodynamic
where the canonical momentum and the velocity coinci
Let the vorticity be concentrated in a quasi-one-dimensio
structure, a vortex filament, with a typical longitudinal sca
L being much larger than the widthd of the filament. A
typical scale of spatial inhomogeneity is supposed to be
order ofL or larger. In such situation, the kinetic energy
the fluid is concentrated in the vicinity of the filament, wi
the corresponding integral being logarithmically large on
parameterL/d. The LIA consist in the following simplifica-
tions. First, in the kinetic part of the Lagrangian~27!, the
dependence of the shape of vortex lines on the labeln is
neglected, i.e., the filament is considered as a single c
R(j,t). After integration overd2n the constant multiplierG
appears now, which is the value of velocity circulatio
03630
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around the filament. Second, some significant simplificati
may be done in the Hamiltonian. Generally speaking, ex
expression for the Hamiltonian implies derivation of the d
pendencev$r0 ,V% from the following system of equations

curlv5V, div„r0~r !•v…50,

and subsequent substitution ofv into the expression for the
kinetic energy. After that one has to deal with a nonloc
Hamiltonian

H Euler
$r0%

5
1

2E E Gab
$E,r0%

~r1 ,r2!Va~r1!Vb~r2!dr1 dr2 ,

where the Green functionGab
$E,r0%(r1 ,r2) has the following

asymptotics at close arguments:

Gab
$E,r0%

~r1 ,r2!→ r0~r1!dab

4pur22r1u
, r2→r1 .

Therefore, the Hamiltonian of a singular vortex filament,

H f
d505

G2

2 R R Gab
$E,r0%

~R1 ,R2!R1a8 R2b8 dj1 dj2 ,

~30!

whereR1a8 5]j1
Ra(j1) and so on, logarithmically diverges

Taking into account the finite widthd and the longitudinal
scaleL, it is possible to put, with a logarithmic accuracy, th
Hamiltonian of a thin vortex filament equal to the followin
expression:

H f
d'HA5GA R r0~R!uRjudj, ~31!

where the constantA is

A5
G

4p
lnS L

dD . ~32!

In accordance with the simplifications made above, the m
tion of a slender vortex filament in the spatially inhomog
neous system is described approximately by the equatio

@Rj3Rt#r0~R!/A5¹r0~R!•uRju2]jS r0~R!•
Rj

uRju
D ,

which is obtained by substitution of the Hamiltonian~31!
into Eq. ~24!. The given equation can be solved with respe
to Rt and rewritten in terms of the geometrically invaria
objectst,b,k, wheret is the unit tangent vector on the curv
b is the unit binormal vector, andk is the curvature of the
line. As the result, we have the equation

Rt /A5@“$ ln r0~R!%3t#1kb, ~33!
5-5
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V. P. RUBAN PHYSICAL REVIEW E 64 036305
the applicability of which is not actually limited by the Eu
lerian hydrodynamics. Let us indicate at least two mo
physical models where the LIA equation~33! is useful.

B. LIA in EMHD

The first model is EMHD, the Hamiltonian of which con
tains, besides the kinetic energy, also the energy of magn
field B created by current of the electron fluid through t
motionless inhomogeneous ion fluid. In principle, the Ham
tonian of EMHD is determined by the relations that follo
from the LagrangianLe , Eq. ~3!:

curlv1
e

mc
B5V, curlB5

4pe

mc
r0~r !•v,

HEMHD5E S r0~r !
v2

2
1

B2

8p Ddr .

In a spatially homogeneous system we would obtain the
pression

H EMHD
h 5

r0

8pE E e2qur12r2u

ur12r2u
V~r1!•V~r2!dr1 dr2 ,

where the screening parameterq is determined by the rela
tion

q25
4pr0e2

m2c2
.

In an inhomogeneous systemq is a function of coordinates
with a typical valueq̃. Let us suppose the inequalitiesq̃L

@1 and q̃d!1. One can see that the logarithmic integ
analogous to the expression~30! is cut now not on theL, but
on the skin depthl51/q. Accordingly, for this case the con
stantA in LIA equation ~33! is given by the expression

AEMHD5~G/4p!lnS mc

edAr̄
D .

We see that in ideal EMHD the LIA works better than
Eulerian hydrodynamics, due to the screening effect.

C. LIA in Bose-Einstein condensates

Another important physical model, where the equat
~33! may be applied, is the theory of Bose-Einstein cond
sate for a weakly nonideal trapped gas with a quantized
tex filament @23#. At zero temperature this system is d
scribed approximately by the complex order parame
F(r ,t) ~the wave function of the condensate!, with the equa-
tion of motion ~the Gross-Pitaevskii equation! taking in di-
mensionless variables the form

iF t5S 2
1

2
D1U~r !2m1uFu2DF, ~34!
03630
e

tic

-

x-

l

n
-
r-

r

whereU(r ) is an external potential, usually of the quadra
form

U~r !5ax21by21cz2,

and the constantm is the chemical potential. Let us suppo
a>b>c. It is well known that Eq.~34! admits the hydrody-
namical interpretation. The variablesr andp are defined by
the relations

r5uFu2, rp5~F̄“F2F“F̄!/2i .

The corresponding Hamiltonian is

HGP5E F ~“Ar!21rp2)

2
1@U~r !2m#r1

r2

2 Gdr .

In comparison with the ordinary Eulerian hydrodynamic
there is the term depending on the density gradient in
expression. However, with large values of the parame
m2/a, one may neglect that term in the calculation of t
equilibrium density inside the space region where the den
is not exponentially small, and use the approximate form

r0~r !'m2U~r !, if $m2@a,m2U~r !.0%.

As is known, Eq.~34! admits solutions with quantized
vortex filaments, the circulation around them being equa
2p. In these solutions, the density differs significantly fro
r0(r ) only at close distances of order 1/Am from the zero
line. Far away, up to distances of orderL;Am/a@1/Am, we
have almost Eulerian flow. Therefore, the LIA equation~33!
is valid for a description of slow motion of the quantu
vortex filament in trapped Bose-condensates of a relativ
large sizeL, with the parameter

A5AGP5~1/4!ln~m2/a!.

The inequalitym2@a ensures also the smallness of the fi
ment velocityv f;kAGP with respect to the speed of soun
cs;Am, while the curvature of the filament is of orderk
;Aa/m .

V. CONCLUSIONS

Let us summarize briefly the main results of this pap
First, neglecting acoustic degrees of freedom in the inve
gation of slow isentropic flows of a compressible perfe
fluid in spatially inhomogeneous systems, the general fo
of variational principle for the dynamics of frozen-in vorte
lines has been found. The connection from the basic
grangian given in terms of density and velocity fields to t
Hamiltonian of vortex lines has been provided, which allo
one to analyze vorticity dynamics in complicated syste
initially specified by the principle of least action. Secon
this method has been applied to several physically impor
models, such as Eulerian hydrodynamics in an external fi
ideal electron magnetohydrodynamics on inhomogene
5-6
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ion background, and the Gross-Pitaevskii model for trap
Bose-Einstein condensate, in order to derive approxim
equations of motion for vortex filaments. It has been est
lished that a mathematical structure of the equations der
is the same in each of these three cases, though the pa
eters have different physical meaning in each case.

The final remark concerns the possibility of developm
of an analogous approach in the general case, where aco
waves are important. Although at present this wo
s

er

iz

03630
d
te
-
d
m-

t
stic

has not been completed, the author hopes it will be don
the future on the basis of Eqs.~13! and ~14!.
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