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Slow inviscid flows of a compressible fluid in spatially inhomogeneous systems
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An ideal compressible fluid is considered, with an equilibrium density being a given function of coordinates
due to presence of some static external forces. The slow flows in such system, which do not disturb the density,
are investigated with the help of the Hamiltonian formalism. The equations of motion of the system are derived
for an arbitrary given topology of the vorticity field. The general form of the Lagrangian for frozen-in vortex
lines is established. The local induction approximation for motion of slender vortex filaments in several
inhomogeneous physical models is studied.
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[. INTRODUCTION liquid systems. This is the reason why a clarification of struc-

ture of conservation laws is very important, as well as the

Hydrodynamic-type systems of equations are extensivelgearch for such new parametrizations for dynamical vari-
employed for macroscopic description of physical phenom-ables, which take into account the integrals of motion more
ena in ordinary and superfluid liquids, gases, plasmas, and ikcompletely. In many cases, even when a dissipation is

other substances. In solving hydrodynamic problems, it igresent but its level is low, it is still correct to speak about
admissible in many cases to neglect all dissipative processéstegrals of the corresponding conservative problem, because
and use the ideal fluid approximation, at least as the firsvalues of some of them are conserved with a high accuracy,

step. With this approximation, a dynamic model describingespecially on an initial stage of the evolution, while the sys-
flow is conservative. The Hamiltonian formalism is a conve-tem has not proceeded to a state where a role of dissipation is
nient tool to deal with such systerfis, 2], which makes pos-  sjgnificant due to large gradients. Besides this, conservation
sible to consider in a universal way all nonlinear processes. fy\s in physical systems, as a rule, are associated with defi-
big number of works is devoted to application of the Hamil- it geometrical objects. Usage of these associations pro-

tonian method in hydrodynamidsee, for instance, the re- o1e5 understanding and vivid imagination of everything
views [3,4] and references thergin . . .that happens. In hydrodynamic models, the frozen-in vortex
o e Jnes ae such geometical oo, 0 th present vork i
. . : . ' “devoted to the study of the motion of vortex lines in spatially
the question about integrals of motion of a dynamic system.

According to the theorem of Noethét,2], each conserva- mhomogeneous_ system_s. . . . .

tion law of a system is closely connected to a symmetry of Hydrodynamic equations describe, in particular, interac-

the corresponding Lagrangian with respect to some onelion Detween “soft” degrees of freedom of a system—

parameter group of transformations of dynamical variablesf0Z€n-in vortices, and “hard” degrees of freedom—acoustic

It is well known that the conservation laws for the energy,M0des. The presence of soft degrees of freedom is explained
momentum, and the angular momentum follow from the fun-PYy the fact that equilibrium states of the fluid are highly
damental properties of the space and time, namely, from hdjegenerated due to the relabeling symmetry. Thus, no poten-
mogeneity of the time and from homogeneity and isotropy ofti@l energy corresponds to soft degrees of freedom, unlike the
the space. Due to these properties, shifts and rotations of kard degrees of freedom. Due to the dominating effect of
system do not change its Lagrangian. The characteristic fe£lastic potential energy, hard degrees of freedom behave,
ture of the hydrodynamic-type systems is that they posses{;){pmally, like a spt of weakly nonlinear oscnlatqrs. On thg
besides the indicated usual integrals of motion, also an inficontrary, dynamics of soft degrees of freedom is not domi-
nite number of specific integrals of motion related to thenated by a potential energy, and usually it is highly nonlinear.
freezing-in property of canonical vorticifid—12. The rea- N @ limit of slow flows, when a typical velocity of vortex
son for this is a basic physical property of fluids, relabelingStructure motion is small in comparison with the sound
symmetry. For instance, in isentropic flows the circulation ofSP€ed, & dynamic regime is possible, in which the hard de-
the canonical momentum along any frozen-in closed contougrées of freedom, corresponding to deviations of fluid den-
is conserved. In usual nonrelativistic hydrodynamics, wheréity p(r.t) from an equilibrium configuratiopo(r), are ex-
the canonical momentum coincides with the velocity, theCited weakly. Then, completely neglecting the sound, in the
given statement is known as the theorem of Kelvin abouflomogeneous casg=const one arrives at the models of
conservation of the velocity circulatidi3,14). incompressible fluid. For dynamics of vortices in incom-
Existence of an infinite number of integrals of motion pressible perfect fluid the so called formalism of vortex lines
influences strongly dynamical and statistical properties ofas been developed recenfly—12], which takes into ac-
count the conservation of topology of the vorticity field
[15,16. Application of this formalism allows one to deal
*Electronic address: ruban@itp.ac.ru with a partially integrated system, where the topology is
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fixed by the Cauchy invariaffL3]. In the proposed descrip- special symmetry of the basic equations of ideal hydrody-
tion the frozen-in solenoidal vorticity field is considered as anamics[3—8,11,12. As known, the entire Lagrangian de-
continuous distribution of the elementary objects—vortexscription of a motion of some continuous medium can be
lines. Such formulation of inviscid hydrodynamics as thegiven by the three-dimensiondBD) mapping r=x(a,t),
problem of vortex line motion has been very suitable for thewhich indicates the space coordinates of each medium point
study of localized vortex structures such as vortex filamentsabeled by a labed=(a,,a,,a3), at an arbitrary moment in
Also, it seems to be an adequate approach to the problem d¢fne t. The labelinga can be chosen in such a manner that
finite time singularity formation in solutions of hydrody- the amount of matter in a small volund®a in the label
namic equation§l17]. space is simply equal to this volume. With neglecting all
The goal of the present work is to extend the vortex linedissipative processes, a dynamic model describing flow is
formalism to the case where equilibrium density(r) is a  conservative, so the equations of motion for the mapping
fixed nontrivial function of spatial coordinates due to a staticx(a,t) follow from a variational principle
influence of some external forces. Such situation takes place
in many physically important models. For examples, it can
be the gravitational force for a large mass of an isentropic
gas, both in usual and in relativistic hydrodynamics, or it can )
be the condition of electrical neutrality for the electron fluid where the Lagrangiad is a functional ofx(a,t), x(a,t), and
on a given background of ion distribution in the model of also spatial derivatives. A very important circumstance is re-
electron magnetohydrodynami@@MHD). The theory devel- lated to the fluidity property of the media under consider-
oped can be also applied to tasks about long-scale dynamiegion. The fluidity is manifested in the fact that the Lagrang-
of the quantized vortex filaments in a Bose-Einstein condengn actually contains the dependence xqa,t) and x(a,t)
sate placed into a trap of a sufficiently large size. The vortexnly through two Eulerian characteristics of the flow, namely
line formalism seems to be a universal and adequate tool fafrough the field of density(r,t) and the velocity field
investigation of slow inviscid flows in inhomogeneous sys-y(r t), i.e., £=£{p,v}, with
tems. For instance, it makes possible, in a simple and stan-
dard way, to analyze qualitative behavior of vortices without
detailed consideration of basic equations of motion for the P(r,t):de‘{
fluid. Therefore, the proposed approach can have advantages
over other methods when complicated systems will beHerea(r,t) is the inverse mapping with respectxa,t).
studied. A simple particular example is the Lagrangian of ordinary
As a concrete result, the local induction approximationEulerian isentropic hydrodynamics
(LIA) in vortex dynamics will be analyzed for several spa-
tially inhomogeneous physical systems, namely for Eulerian p f ( V2
Euler™

5S= 5f L£{x(a,t),x(a,t)}dt=0,

da(r,t)
ar

, ) =x(@|acary . D

compressible hydrodynamics in an external field, for EMHD, po —e(p)=pU(r)|dr, )

and for vortices in trapped Bose-Einstein condensates. A new

equation of vortex filament motion will be derived, which where e(p) is the internal energy density andi(r) is the
takes into account the inhomogeneity of these systems, E@xternal force potential, for instance, the gravitational poten-
(33). As to relativistic hydrodynamics in a static gravitational tial.

field, the proposed method gives a more complicated LIA A less trivial example is the Lagrangian of relativistic
equation than Eq.33), as it has been shown recently by the isentropic hydrodynamickl8] in a curved space time with
present authof18]. (See also the most recent pagd®]  metric tensom;,(t,r) (i,k=0...3a,8=1...3),

about dynamics of an ultrarelativistic fluid in the flat aniso-
tropic cosmological models of expanding universe, where p

the formalism of vortex lines has been applied to systems L= _J 5(f\/goo+ 290ava+gaﬁvavﬁ \/—_gdr.
with Hamiltonian functionals depending explicitly on the 9

time variable, and the effect of nonstationary anisotropy OfHereg=de¢|gik|| is the determinant of the metric tensor, the

the space on vortex dynamics has been stutied. expression in parenthesis is equal to the absolute value of the
Thl_s paper |s_organ|zed as follqwg. A §hort review of La- . rrent four-vecton' = n(dx'/ds) [20]. A dependence(n)

grangian formalism for fluid media is given in Sec. Il. It ;onnecis the relativistic density of the fluid energy, mea-

provides a basis for development in Sec. Il of the vortex I'n,esured in a locally co-moving reference frame, with

formalism for spatially inhomogeneous systems. Then in, hiagma physics, the model of electron magnetohydro-
Sec. IV, the_method deyeloped is applied to derive approXigynamics is useful. EMHD follows in the limit of slow flows
mate equations of motion for slender nonstretched vorte¥om the Lagrangian of electron fluid

filaments in three above-mentioned physical models.

v ooe (curlA)?
Ee:f p5+t—p(Av)——(4——+---]dr, (3
Il. LAGRANGIAN FORMALISM FOR A FLUID 2 mc 8w

From the viewpoint of the Lagrangian formalism, the wherep(r,t) is the density of electron fluick is the electric
freezing-in property of the canonical vorticity is due to the charge of electronm is its mass, and is the speed of light.
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The vector potentiah(r,t) of the electromagnetic field de- We arrive at a different formulation, in terms of the so-called
termines the magnetic field3(r,t) by the relation B Cauchy invariant, when we consider the solenoidal field of
=curlA. In this paper, we will not need an explicit form of the canonical vorticity(r,t),
other terms indicated by the dots.

The list of examples, of course, is not exhausted by three Q(r,t)=curlp(r,t). (8)
given models. All known hydrodynamic models without dis-
sipation, where the conservation of fluid amount takes placdt is easy to check that application of the curl operator to the
can be described in this way. So the theory developed here gAuation(5) gives
quite universal and applicable in various branches of physics
where vortex phenomena occur. Q=curl [vXQ]. )

It follows from the definitions(1) that dynamics of the ) ) o
density p(r,t) obeys the continuity equation in its standard The formal solution of this equation is
form

pet V(pv) =0. @ Q(r,t):f S(r—x(a1))(Qo(a)Vax(at)da, (10

The vanishing condition for variation of the actidh  where the solenoidal independent of time fi€ld(a) is ex-
= [L{p,v}dt, when the mapping(a,t) is varied bysx(a,t),  actly the Cauchy invariant. The equati¢h0) displays that
can be expressed in Eulerian representation as follthes lines of initial solenoidal fieldQy(a) are deformed in the
generalized Euler equatidqi1]) course of motion by the mapping(a,t), keeping all the

topological characteristics unchandé®,16. This feature of
(55) 1( 55) . ) vortex line dynamics is called the freezing-in property.

S b\ ope

v 1 6L
(dtv- );'E

I1l. HAMILTONIAN DYNAMICS OF VORTEX LINES

This is merely the variational Euler-Lagrange equation To continue, it is more convenient to reformulate the

problem in terms of density and canonical momentum. Let
d oC oL the system be specified by some Hamilton functidigp, p}

dt sx(a) OX(a)

L
for fluid particle dynamics. The equatiod) and(5) deter- H:f (W'V)dr_ﬂ’ D
mine completely evolution of hydrodynamic system.

It was already mentioned that in all such systems an infiwhere the velocity is expressed through the momentpm
nite number of conservation laws exists. Thev} depen-  and through the density with the help of Eq.(7). Let us
dence means that the Lagrangigix(a,t),x(a,t)} admits note that the following equality takes place:
the infinite-parametric symmetry group—it assumes the
same value on any two mappingga,t) andx,(a,t), if they 1
differ one from another only by some relabeling of the labels V= ;
with unit Jacobian,

SH
o

: (12

. . which is analogous to formul&). The Hamiltonian(nonca-
X(at)=xi(@" (a),t), deflga*/gal=1. (6)  nonical[3]) equations of motion for the fields of density and
momentum follow from Eqs4) and(5). Taking into account

Obviously, such mappings create the same density and Vene equality(12), they have the forntfor detailed derivation
locity fields. According to Noether’s theorefi,2], every see[11])

one-parameter subgroup of the relabeling gratipa) with

unit Jacobian corresponds to an integral of motion. There are SH
several classifications of these conservation laws. For in- pit+V 6_):0’ (13
stance, one can postulate that circulation of the canonical P
momentump(r,t),
_HéH)XcurIp V(&H) 14
5L 1(8C{p.v} Pl op p op )
p(r,t)z@.( t >l ) (7)
(A0 PR It is assumed in this work that the Hamiltonian has a

) ) minimum at some configuratiofpy(r),po(r)}. For simplic-
along an arbitrary frozen-in closed contoy(t) does not iy, we will consider only systems without gyroscopic ef-

depend on timéthe generalized theorem of Kelyin fects, i.e.,po(r) =0. Our purpose is to study slow flows near
the equilibrium. In the regime under consideration, which
é (p-dr)=const. corresponds formally to “prohibition” of excitation of the
(1) acoustic modes, the flow of fluid occurs in such a way that
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the density of each moving portion of fluid follows the given Geometrical meaning of representatidi®) becomes clearer
function py(r). Therefore, the equatiofi3) gives the condi- if instead ofa we use a so-called vortex line coordinate sys-

tion tem[v.(a),vo(a),£(a)], so that the 2D Lagrangian coordi-
natev=(vq,v,) e Nis a label of vortex lines, which lies in
oH some manifoldV, while a longitudinal coordinaté param-
v 5_p =0, (15 etrizes the vortex line. Locally, vortex line coordinate system

exists for arbitrary topology of the vorticity field, but
which means that after imposing the constraintpy(r), the  globally—only in the case when all the lines are closed. In the
Hamiltonian no longer depends on the potential componeniast case Eq(18) can be rewritten in the simple form
of the canonical momentum field; it depends now only on the
solenoidal component, i.e., actually on the vorticiy: It
should be also noted that it is sufficient to take into consid- Q(r,t)zf d?vy fﬁ o(r—R(v,&,1))R, d¢, (21
eration only the quadratic part of the Hamiltonian, because N
the flow is supposed to be slow, so higher order terms, if any
exist, may be neglected. Therefore, in further equationswhereR.=dJR/d¢. The geometrical meaning of this formula
H{Q} is actually a quadratic functional of the vorticity field, is rather evident—the frozen-in vorticity field is presented as
though this fact will not be used in formal calculations. Thea continuous distribution of vortex lines. It is also clear that
condition (15) implies validity of the formula the choice of the longitudinal parameter is nonunique. This
choice is determined exclusively by convenience for a par-
ticular task. Usage of the formula

—=curl 50

o0H o0H 16
5 : (16)

so the next equation for slow dynamics of the vorticity fol- Qt(r,t)=curlrf a(r—R(a,t))[Ry(at)XT(at)]da,
lows from Eq.(14):

(22)
Q,=curl curl(& > Q ) (17) which follow:f, immediately from I_Eq(_18), toggthe_r with the
Q| po(r) general relationship between variational derivatives of an ar-

. . . _bitrary functionalF{Q},
This equation differs only by the presence of the function

po(r) (instead of the unityfrom the equation used ifiL0]
and[12] as a starting point in the transition to the vortex line
representation in homogeneous systems. Therefore, all fur-
ther constructions will be done similarly to R¢f.2]. First,
let us fix the topology of the vorticity field by means of the

oF || oF{Q{R}}
59<R>”‘ SR(a)

TX curlr< , (23

Q

allows us to obtain the equation of motion for the mapping

formula R(a,t) by substitution of representatidii8) into Eq. (17).
As the result, dynamics of the mappiRga,t) is determined
Q(r,t):f 5 (r—R(at))(Qy(a)V)R(at)da by the equation
(Qo()VIR(at) s H{Q{R}}
= Ll 18 = —
def[aR/ad] R, (18 [(Q2o(a) VR(a) X Ry(@)]po(R) 5R(a) (24)
wherey(a) is the Cauchy invariant. The vector Itis not very difficult to check by a direct calculation that the
given equation of motion foR(a,t) follows from the varia-
T(at)=(Q(a)VaR(at) (19)  tional principle 5f Lo dt=0, where the Lagrangian is

is directed along the vorticity field at the point R(a,t). It
is necessary to stress that the information supplied by the
mappingR(a,t) is not so full as the information supplied by ‘CQOZJ ([RxD(R)]- (QoVy)R)da—H{Q{R}},
the purely Lagrangian mappinga,t). The role of the map- (25)
ping R(a,t) is exhausted by a continuous deformation of the
VQI’teX lines of the initial flelmO This means that the Jaco- with the vector functiorD(R) being related to the density
bian po(r) by the equality
I=deyoRize| (20 (Vi D(RD=po(R). 26
is not related directly to the densipg(r), inasmuch as, un-

like the mappingx(a,t), the new mappindR(a,t) is defined For application to vortex filaments, the following form of the
up to an arbitrary nonuniform shift along the vortex lines. Lagrangian is more useful, wheR=R(v,&,1):
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) around the filament. Second, some significant simplifications
Ly= de v % ((RXD(R)]-R)dé—H{OQ{R}}. (27)  may be done in the Hamiltonian. Generally speaking, exact
expression for the Hamiltonian implies derivation of the de-

It should be stressed that conservation in time of the fluid?endencer{po, 2} from the following system of equations:

amount inside each closed frozen-in vortex surface is not
imposeda priori as a constraint for the mappiri(a,t). All
such quantities are conserved in the dynamical sense due to

the symmetry of the Lagrangiaf®7) with respect to the and subsequent substitution wfinto the expression for the
group of relabelings of the labels of vortex lines kinetic energy. After that one has to deal with a nonlocal

Hamiltonian

curlv=Q, div(pg(r)-v)=0,

v=v(v,t), vy, v)d(vy,v,)=1. (28)

o) _ 1 {E.pg)
Considering all one-parametrical subgroups of the given Hedier™ Ef J Cop P (r1,ra) (1) Qp(ro)dry dry,
group of area-preserving transformations and applying
Noether's theoreni2] to the Lagrangian27), it is possible  \yhere the Green functio'="?(r,,r,) has the following
to obtain the indicated integrals of motion in the following asymptotics at close argurﬁgnts:
form (compare with Ref[21]):

{E.po} Po(r1) Oap
|w=fNW<vl,v2>d2v3ﬁpo<R><[Rl><R2]-Rg>d§, Y P s o C o £F

(29 Therefore, the Hamiltonian of a singular vortex filament,

whereW (vq,v,) is an arbitrary function on the manifol
of labels, with the only condition¥| ,,=0. . I L
MY O:? jg % G{LYZPO}(RlaRZ)RlaRZB dé;dés,

IV. LOCAL INDUCTION APPROXIMATION (30

When a p_arucula}r task is b(_alng_.f,olv_ed, the necessity al\?VhereRia:ag R,(£;) and so on, logarithmically diverges.
ways arises in making some simplifications. The varlatlonaLl_ L 1 . . -
aking into account the finite widtd and the longitudinal

formulation for the dynamics of vortex lines allows us to L. iti ol hal thmi h
introduce and control various approximations on the level ofC2/€L. It IS possible to put, with a logarithmic accuracy, the

the Lagrangiari27), what in practice is more convenient and Hamiltonian of a thin vortex filament equal to the following
more simple than control of approximations made on the?XPression:
level of equations of motion. For example we will consider

now the so called LIA in dynamics of a slender nonstretched

vortex filament. As known, in spatially homogeneous sys-

tems the LIA yields an integrable equation that is gauge
equivalent to the nonlinear Schiinger equation22]. In  where the constar is

general case, inhomogeneity destroys the integrability of LIA

equation. Nevertheless, this does not reduce the value of LIA r (L

as a simplified model of filament dynamics. A= 4—In
a

Hi~Ha=TA § polRIIRdz @1

d

. (32

A. LIAIn Eulerian hydrodynamics In accordance with the simplifications made above, the mo-

At first, we will consider the Eulerian hydrodynamics, tion of a slender vortex filament in the spatially inhomoge-
where the canonical momentum and the velocity coincideneous system is described approximately by the equation
Let the vorticity be concentrated in a quasi-one-dimensional
structure, a vortex filament, with a typical longitudinal scale R
L being much larger than the widtt of the filament. A [RgX Rt]pO(R)/AIVpO(R)-|R§|—(3’§(po(R)' —5)
typical scale of spatial inhomogeneity is supposed to be of IRl

order ofL or larger. In such situation, the kinetic energy of = ) _— T
the fluid is concentrated in the vicinity of the filament, with Which is obtained by substitution of the Hamiltoni&81)

the corresponding integral being logarithmically large on thdnt@ Ed. (24). The given equation can be solved with respect
parametel/d. The LIA consist in the following simplifica- to Ry and rewritten in terms _of the geometrically invariant
tions. First, in the kinetic part of the Lagrangi®7), the ob;ectst,b,;, wheret is the unit tangent vector on the curve,
dependence of the shape of vortex lines on the labed P iS the unit binormal vector, and is the curvature of the
neglected, i.e., the filament is considered as a single cunAin€- As the result, we have the equation

R(&,t). After integration oveid?» the constant multiplief

appears now, which is the value of velocity circulation Ri/A=[V{Inpo(R)} Xt]+ kb, (33
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the applicability of which is not actually limited by the Eu- whereU(r) is an external potential, usually of the quadratic
lerian hydrodynamics. Let us indicate at least two moreform
physical models where the LIA equatid®3) is useful.
U(r)=ax?+by?+cz,
B. LIA in EMHD
and the constant is the chemical potential. Let us suppose

_The flrs_t model is EMHD, the Hamiltonian of which con- a=b=c. Itis well known that Eq(34) admits the hydrody-
tains, besides the kinetic energy, also the energy of magnetic

field B created by current of the electron fluid through thenamlc"le Interpretation. The variablpsandp are defined by
. . : ; o . the relations

motionless inhomogeneous ion fluid. In principle, the Hamil-

tonian of EMHD is determined by the relations that follow 5 — —

from the LagrangiarC,, Eq. (3): p=|®|%,  pp=(PVO—-DOVD)/2i.

The corresponding Hamiltonian is

HGP:J'

In comparison with the ordinary Eulerian hydrodynamics,

In a spatially homogeneous system we would obtain the ext_here |s.the term depend_lng on the density gradient in this
expression. However, with large values of the parameter

Vvt~ B=Q B=27°
curlv meB= % cur —m—cpo(r)-v,

2 2 2
M-ﬁ-[U(r)—ﬂ]p%— % dr.

dr.

V2 B2
HEMHDZJ (Po(r)EJrg

pression w?la, one may neglect that term in the calculation of the
p ol equilibrium density inside the space region where the density
. o ) ; i
HEMHD:@[ f mﬂ(fl)'ﬂ(fz)dfldfz, is not exponentially small, and use the approximate formula

~ 1 — i 2s —
where the screening parametgis determined by the rela- po(r)~u=U(r), it {u">a,u=U(r)>0}.

tion As is known, Eq.(34) admits solutions with quantized

vortex filaments, the circulation around them being equal to
2_47TP092 2. In these solutions, the density differs significantly from
Cm2e? po(r) only at close distances of order\}t from the zero
line. Far away, up to distances of order \/u/as1/\/u, we
In an inhomogeneous systeis a function of coordinates, have almost Eulerian flow. Therefore, the LIA equati@8)
with a typical valueq. Let us suppose the inequalitiet is valid_for a d_escription of slow motion of the quantum
~ L vortex filament in trapped Bose-condensates of a relatively
>1 andqd<1. One can see that the logarithmic integral large sizel, with the parameter
analogous to the expressi@80) is cut now not on the., but '
on the skin depth = 1/q. Accordingly, for this case the con-
stantA in LIA equation(33) is given by the expression

A=Agp=(1/4)In(u?/a).

The inequalityu?>a ensures also the smallness of the fila-
A — (T/4m)in mc ment velocityv s~ kAgp With respect to the speed of sound
EMHD edvp) cs~Vu, while the curvature of the filament is of order
~yalu .
We see that in ideal EMHD the LIA works better than in
Eulerian hydrodynamics, due to the screening effect. V. CONCLUSIONS
C. LIA in Bose-Einstein condensates Let us summarize briefly the main results of this paper.

) ) . First, neglecting acoustic degrees of freedom in the investi-
Another important physical model, where the equationgation of slow isentropic flows of a compressible perfect

(33) may be applied, is the theory of Bose-Einstein condenyig in spatially inhomogeneous systems, the general form
sate for a weakly nonideal trapped gas with a quantized vorsf yariational principle for the dynamics of frozen-in vortex

tex filament[23]. At zero temperature this system is de- jines has been found. The connection from the basic La-
scribed approximately by the complex order parametefangian given in terms of density and velocity fields to the
@(r,1) (the wave function of the condensateith the equa-  apiltonian of vortex lines has been provided, which allows
tion of motion (the Gross-Pitaevskii equatiptaking in di-  one 1o analyze vorticity dynamics in complicated systems
mensionless variables the form initially specified by the principle of least action. Second,

this method has been applied to several physically important

i®,=| - EA+ U(r)—p+|®?| @, (34) !”nodels, such as Eulerian hydrodynamics in an external field,

2 ideal electron magnetohydrodynamics on inhomogeneous
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ion background, and the Gross-Pitaevskii model for trappedhas not been completed, the author hopes it will be done in
Bose-Einstein condensate, in order to derive approximatthe future on the basis of Eq&l3) and (14).

equations of motion for vortex filaments. It has been estab-

lished that a mathematical structure of the equations derived ACKNOWLEDGMENTS
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